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Abstract

In this paper, exact and numerical solutions are obtained for the Kawahara’s
equation by variational homotopy perturbation method (VHPM). Comparisons are
made among the variational iteration method (VIM), the exact solutions and the
proposed method. The results reveal that the proposed method is very effective
and simple, and can be applied for other nonlinear problems in mathematical.

1. Introduction

In this paper, we consider the numerical solutions to a problem
involving a nonlinear partial differential equation of the form

Uy + Ul + Ugy —Us, = 0, 1)

which is called Kawahara’s equation. We solve Equation (1), subject to
the initial condition
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ux, 0) = f(x), xeR ©)

The Kawahara’s equation occurs in the theory of magneto-acoustic waves
in a plasma, and in the theory of shallow water waves with surface
tension [14].

In order to solve this equation numerically, we use variational
homotopy perturbation method. The numerical results are compared with
the exact solutions and those, which have been previously obtained by the
variational iteration method in [14].

2. Variational Homotopy Perturbation Method

To convey the basic idea of the variational homotopy perturbation

method, we consider the following general differential equation

Lu + Nu = g(x), 3)

where L is a linear operator, N is a nonlinear operator, and g(x) is an

inhomogeneous term. According to variational iteration method [1-4,

7-10, 12], we can construct a correct functional as follows:
X
2 () = 0 () + [ 05) (L, + NiT, ~ () . @

where A(t) is a Lagrange multiplier [1-4, 7-10, 12], which can be

identified optimally via the variational iteration method. The subscripts n

denote the n-th approximation, #,, is considered as a restricted variation.
That is, 8%,, = 0 and (4) is called a correct functional. Now, we apply the

homotopy perturbation method;

gpiui =ug + pj: A7) {N[;piui ]} dr - I: Mr)g(T) dr, (5)

which 1is the wvariational homotopy perturbation method, and 1is
formulated by the coupling of variational iteration method and Adomian’s

polynomials.
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The embedding parameter p € (0,1] can be considered as an

expanding parameter [5, 6, 11, 13, 15]. The homotopy perturbation
method uses the homotopy parameter p as an expanding parameter [5, 6,
11, 13, 15] to obtain

o0
f =Y p'u; =ug+puy + piug + . ®)
1=0
If p —» 1, then (6) becomes the approximate solution of the form

u=1lmf=uy+u +ug+--. (7
p—l
A comparison of like powers of p gives solutions of various orders.

3. VHPM for Kawahara’s Equation

In this section, we consider Equation (1) with initial conditions
u(x, 0) = f(x),

and apply VHPM on it. For solving Equation (1) by using the VHPM, we

consider
L(u) = u, (8)
N(u) = Uly + Ugy — Usy, (9)

where L is a linear and N is a nonlinear operator. According to the
variational iteration method [1-4, 7-10, 12], we can construct a correct

functional as follows:
t ~ ~ ~ ~
Up1(x, ) = up(x, ) + J.()}\'("'){L‘nT + Uplln, +Ung, — un5x} dr, (10)

where #, is considered as a restricted variation. Making the above

functional stationary, the Lagrange multiplier can be determined as

A = -1, which yields the following iteration formula:

t
Upop(x, t) = u,(x, t) - .[0 {Un, +upltn, +up, —up, }dr (11)
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Applying the variational homotopy perturbation method, we have:
Up + Pty +p2u2 + o0 = f(x)

ot
+p 0—(u0 + pup + plug + - )(uo, +pug, +-)dr

ot
2
+p 0—(u03x + Py, +pug, +-r)dr

o
+p 0(u05x + pup, + p2u25x +--) dr. (12)

Comparing the coefficients of like powers of p, we have:

Y s ug(x, 1) = f(x),

t t t
p oulx, )= _J.o ugup, dt — J.o Ug,, dT + J.o ug,, dr,

t t t
p° tuglx, t) = —Jo(uoulx +uug, ) dt - Io up, dr + Io up, dT,

t t t
p° :ug(x, t) = —Jo(u0u2x +ugug ) dr - Jo ug, At + IO ug, dr,

Thus, the components which constitute u(x, ¢) are written like this
ulx, t) = ug +uy +ug + .

For later numerical computation, we let the expression
n
on = D uilx, 1), (13)

1=0

to denote the n-term approximation to u(x, t).
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4. Implementation of the Method

In this section, two important cases of Kawahara’s equation, which
correspond to some real physical processes will be investigated to show
the reliability of the proposed scheme.

Example 1. We consider the Equation (1) with u(x, 0) = —%
+ 105 sech4(kx), where k = L By using the Equation (12), we have:
169 2413
72 105 4 V13
uo(x, £) = ~ 765 + 159 Seh [26 xJ
0
sinh(¥3 x
up(x, t) = — 7560 V13 ( )

371293 Cosh5(\§ x)

68040 o 4 coshz(g x)— 5

t2
62748517 coshG(r x) ’
26

uys(x, t) =

Thus, the components which constitute u(x, ¢) are written like this
u(x, t) = ug +uy +ug + .

The exact value of u(x, t) in a closed form is

12 1054
u(x, t) = 69 T 169 sech”[k(x + ct)], (14)
1

wherec-iandk——

169 213"

as presented in[14].

In what follows, we present the absolute errors between ¢;yypy, and
the exact solution and also the absolute errors between @oyppy and the
exact solution in Tables 1 and 2, for the values of ¢ = 0.1(0.1)0.5 and
x = 0.1(0.1)0.5.



444

M. MATINFAR et al.

Table 1. The numerical results for ¢; in comparison with the exact

solution of u

tj|xi 0.1 0.2 0.3 0.4 0.5

0.1 1.0827e - 005 1.0781e-005 1.0706e — 005 1.0603e—005 1.0472e - 005
0.2 4.3296e — 005  4.3105e - 005  4.2799e - 005  4.2378e-005  4.1846e — 005
0.3 9.7393¢ — 005  9.6945e — 005  9.6236e — 005  9.5273e - 005  9.4058e — 005
0.4 1.7310e - 004  1.7227e—-004 1.7098¢ — 004 1.6923e—-004 1.6704e — 004
0.5 2.7039¢ — 004  2.6904e - 004 2.6697e—-004 2.6420e-004 2.6072e - 004

(@)

Figure 1. Comparison between the (a) u(x, t), and (b) ¢;ygpy for the
values of ¢ = 0(0.1)0.5, x = 0(0.1)0.5.
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Table 2. The numerical results for ¢ in comparison with the exact

solution of u

tj|xi 0.1 0.2 0.3 0.4 0.5
0.1 2.1812e — 009  4.2408e — 009 6.2785e — 009 8.2840e — 009  1.0247e - 008
0.2 1.8330e — 008  3.4799e — 008 5.1089e — 008 6.7116e — 008  8.2801e — 008
0.3 6.4832e¢ — 008  1.2039e — 007 1.7533e — 007 2.2936e — 007  2.8223e - 007
0.4 1.6071e - 007  2.9234e — 007 4.2246e — 007 5.5041e - 007  6.7554e — 007
0.5 3.2762e — 007  5.8457e — 007 8.3850e — 007 1.0881e - 006  1.3322e — 006

(@)

Figure 2. Comparison between the (a) u(x, ¢), and (b) @9ygpy for the
values of ¢ = 0(0.1)0.5, x = 0(0.1)0.5.
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Example 2. Now, we consider the Equation (1) with

72 420  sech®[kx] 1 .
e , where &k = ——_. By using the
169 169 (1 4 sech[kx])? 2413

Equation (12), we have:

u(x, 0) =

uo (x, 1) = _ 72 420 sech?[kx]
0T 169 T 169 (1+sech2[kx])2’

s (5, 1) = 53 376132093 cosh(kx W13t sinh(kx)
1A =
(cosh?(kx) +1)"

40 % V13t cosh(kx) sinh(kx ) cosh® (kx)
(cosh?(kx) +1)°

630 . 9
g 371268 V13t cosh(kx) sinh(kx) cosh? (kx)
(cosh?(kx)+ 1)

.+ 051 930 V13t cosh(kx) sinh(kx) cosh* (kx)
(cosh?(kx) +1)"

- 231 930 V13t cosh(kx) sinh(kx) cosh® (kx)
(cosh?(kx) + 1)

630__ \13¢ cosh(kx) sinh(kx) cosh® (kx)

4+ 80 371293
(cosh?(kx) +1)"

b

Thus, the components which constitute u(x, ¢) are written like this
ulx, t) = ug +uy +ug + .
The exact value of u(x, t) in a closed form is

72 N 420  sech?[(kx + ct)]
169 " 169 (1 + sech?[h(x + ct))*

u(x, t) = - (15)
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where ¢ = and k& = , as presented in [14].

1
213

In what follows, we present the absolute errors between ¢;ygpy and

36
169
the exact solution in Table 3, for the values of ¢ = 0.1(0.1)0.5 and
x = 0.1(0.1)0.5.

Table 3. The numerical results for ¢; in comparison with the exact

solution of u

tilx; 0.1 0.2 0.3 0.4 0.5
0.1  6.0868¢-004 94059 — 004 1.3000e—003 1.6000¢ - 003  1.9000e - 003
02  1.8000e-003  2.4000¢ - 003 3.1000e—003 3.7000¢ -~ 003  4.7000¢ — 003
0.3 3.5000e-003  4.5000e - 003 5.4000e— 003  6.4000¢ — 003  7.4000¢ — 003
04  5.7000e-003  7.0000e - 003 8.3000e—003 9.6000¢ - 003  1.0900e — 002
0.5  85000e-003  1.0100e-002 1.1700e—002 1.3400¢ - 002  1.5000e — 002

(a)

Figure 3. Comparison between the (a) u(x, t), and (b) @;ygpy for the
values of ¢t = 0(0.1)0.4, x = 0(0.1)0.4.
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The numerical results reveal that, the VHPM is easy to implement and
reduces the computational work to a tangible level, while still

maintaining a very higher level of accuracy.
5. Conclusion

In this paper, variational homotopy perturbation method was
employed successfully for solving the Kawahara’s equation. The small
amount of computation compared to that required in other methods such
as the variational iteration method, and the rapid convergence show that
the method is reliable, and provides a significant improvement in solving
partial differential equations over existing methods. The computations in
this paper are done by MATLAB software.
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